Retinopathy Net

Alberto Benavides
Robert Dadashi
Neel Vadoothker

- We were interested in applying deep learning techniques
to the field of medical imaging

- Field holds a lot of promise and can help save lives

- Kaggle is currently holding a competition to build software
that can automatically detect different stages of the eye
disease Diabetic Retinopathy using high quality medical
Images

What is Diabetic Retinopathy?

« Leading cause of blindness in the developed Normal Vision

world, affecting over 93 million people

« Usually associated with long term diabetes

In patients —
- Progress of disease can be slowed if caught Moderate DR Vision
in time, but often doesn’'t show symptoms T —

until it's too late -

- Diagnosing this eye condition is a time
consuming process for trained clinicians

Different Stages of DR
Healthy M Unhealthy

a C) —r
& ~ ‘-
- o
) 4
! e
l~:
S~ -J b
#‘e " ' ‘
4 / ‘ s %
ANw > » . :

. Blood Vessels
- Micro-aneurysms
. Exudates

. Hemorrhage

Blood Vessels

Normal Blood Vessels

- First major symptom are
the blood vessels

- Eyes with DR have

damaged blood vessels
that are unable to nourish Damaged Blood Vessels

the retina - ’\T/m\(
. See right for examples W \

Micro-Aneurysms

- Tiny area of blood
protruding from an artery
or vein in the back of the
eye

This is due to damaged
blood vessels eventually
blowing up and leaking
blood

- In addition to blood,
sometimes fats spill out
from the damaged blood
vessels

. These fats harden into
weird yellow spots on the
retina

. As advanced DR occurs,
the blood vessels become
really leaky and
hemorrhages occur in the
eye

- Visually, hemorrhages are
characterized by dark
spots on the eye

- Kaggle provides a large training dataset of approximately
35,000 medical images

- Each image is of extremely high quality, but the images
aren't standardized.

- About 40GB worth of training data! About 55GB of
testing data.

- Each image is labeled from O-4 where O is healthy and 4
is proliferative DR

- Data comes as both left eye and
right eye
- Has varying quality
o Some images are poorly lit

Outline of Our Solution

- Preprocessing steps

. Class Imbalance Problem
- Convergence tweaks

. Architecture

- Regularization

- Data Augmentation

Preprocessing Steps (1)

1) Crop out black

R

Preprocessing Steps (2)

) Resize images while preserving aspect ratio

H-o

Try multiple image sizes including 512x512, 128x128, and 32x32

Class Imbalance Problem

« A major problem we had in our data set is that the number of

images from each class is heavily skewed For illustration purposes:
« About 28,000 images for class O, 3000 for class 1, 2000 for
class 2, 800 for class 3, and only 700 for class 4 eBiX
- 3 approaches we are taking: K B:X
2 j=1€¢"

o Adjust cost function to penalize misclassifications in
proportion to frequency in training data

o Force minibatches to have equal number of

observations from each class p(l) X eB iX
o Use data augmentation to balance classes by ZK p(]) X eB X
“creating” new examples j=1

Convergence Tweaks (1)

- In addition to SGD, we also implemented Momentum

- On MNIST dataset, Momentum empirically increases converged
by a factor of 2-3 times!

- Momentum borrows from physics concepts. Basically, the
gradient descent procedure builds momentum towards a
direction if the gradient stays in the same direction from
Iteration to iteration.

Momentum update
v = mu * v — learning rate * dx # integrate velocity

X += v # iIntegrate position

Convergence Tweaks (2)

- We found some difficulty in getting our net to converge due to
learning rate parameter

- To help remedy this, we implemented RMSProp which is an
adaptive learning rate procedure

- Basically, it speeds up learning as long as performance is
improving, and slows down learning when performance is not

cache = decay rate * cache + (1 - decay rate) * dx**2
X += - learning rate * dx / np.sgrt(cache + 1le-8)

Convergence Tweaks (3)

« We also combined RMSProp with Momentum
o Empirically, this didn't result in faster
convergence Algorithm 1 Computing ADADELTA update at time ¢

Require: Decay rate p, Constant €
Require: Initial parameter z;

= Finally, we also tried Adadelta 1: Initialize accumulation variables E[g*]o = 0, E[Az*]o = 0
o Basically an adaptation of RMSProp in 2 fort =1:T do %% Loop over # of updates
:] . A 3: Compute Gradient: g;
that it also uses historical gradients 4 Accumulate Gradient: E[g?), = pE[g%]i—1 + (1 — p)g?
o The paper is at: http://arxiv. 5. Compute Update: Az, = ~“icrt=" g
6: Accumulate Updates: E[Az?]; = pE[Az%];—1+(1—p)Az?
org/abs/1212.5701 ¢ Apply Updalot 5oy = ¢ 4 A
8: end for

- Adadelta has an advantage in that it doesn't
require any hyperparameters like a learning rate
or momentum

 Ended up using adadelta for the time being

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

Architecture

We tried two distinct architectures.

1) The basic Lenet5 architecture with some adaptations for our
problem set, including the usage of color images
2) Another custom architecture:

a)
b)
c)
d)
e)

2 convolution layers with 2x2 max pooling
another convolution layer with no max pooling
a fourth convolution layer with 2x2 max pooling
3 fully connected layers with leaky rectifiers

a final classifer layer (logistic regression)

Regularization(1)

- Tried L2 regularization on all weight
parameters to help combat overfitting
- Set the same weight across all layers

- Easy to prevent overfitting but did not
help predictive performance much

F(x) = f(x) + Allzl2

h

Regularization(2)

- Also implemented Dropout on
each layer in our net

- Basic idea is to zero out
neurons at random during
training

- This helps regularize the net , ,
because neurons are forced to () Standard Neural Net
be less codependent and thus
learn useful discriminative
features

(b) After applying dropout.

Regularization(3)

e Also used leaky rectifiers (RELUs)
in the fully connected (hidden)
layers

e Essentially, when x < O, leaky
RELUs have a small slope instead
of zero

e Seemed to help keep overfitting
down a lot

e Experimented with values
between O and .5

o Ended up using values
edlerS

Data Augmentation

- More data -> prevent from overfitting

- From each image: apply a series of random transformations

Data Augmentation

Translation:

Zooming:

Data Augmentation

Rotation:

Flipping:

Data Augmentation

Combining all the random perturbations:

Limitations

e Using Amazon GPUs
o Costs $.65/hour for on demand instances
e Dataset is very large
o Costs $.10/GB/month
o Train set is approximately 40 GB
o Test setis approximately 55 GB
e Models take a long time to run
o Approximately 6 to 8 hours for only 200 epochs
o Sometimes models can take days to train
o Takes a long time to tell if changes are working well
o Many hyperparameters to optimize

Results

e We have achieved 33% validation accuracy

