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Motivation
• We were interested in applying deep learning techniques 

to the field of medical imaging

• Field holds a lot of promise and can help save lives

• Kaggle is currently holding a competition to build software 
that can automatically detect different stages of the eye 
disease Diabetic Retinopathy using high quality medical 
images



What is Diabetic Retinopathy?
• Leading cause of blindness in the developed 

world, affecting over 93 million people

• Usually associated with long term diabetes 
in patients

• Progress of disease can be slowed if caught 
in time, but often doesn’t show symptoms 
until it’s too late

• Diagnosing this eye condition is a time 
consuming process for trained clinicians
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Different Stages of DR

Healthy Unhealthy



Symptoms

• Blood Vessels

• Micro-aneurysms

• Exudates

• Hemorrhage



Blood Vessels

• First major symptom are 
the blood vessels

• Eyes with DR have 
damaged blood vessels 
that are unable to nourish 
the retina

• See right for examples

Normal Blood Vessels

Damaged Blood Vessels



Micro-Aneurysms

• Tiny area of blood 
protruding from an artery 
or vein in the back of the 
eye

• This is due to damaged 
blood vessels eventually 
blowing up and leaking 
blood



Exudates

• In addition to blood, 
sometimes fats spill out 
from the damaged blood 
vessels

• These fats harden into 
weird yellow spots on the 
retina



Hemorrhages

• As advanced DR occurs, 
the blood vessels become 
really leaky and 
hemorrhages occur in the 
eye

• Visually, hemorrhages are 
characterized by dark 
spots on the eye



Data
• Kaggle provides a large training dataset of approximately 

35,000 medical images

• Each image is of extremely high quality, but the images 
aren’t standardized.

• About 40GB worth of training data! About 55GB of 
testing data.

• Each image is labeled from 0-4 where 0 is healthy and 4 
is proliferative DR



Data

• Data comes as both left eye and 
right eye

• Has varying quality
○ Some images are poorly lit



Outline of Our Solution
• Preprocessing steps

• Class Imbalance Problem

• Convergence tweaks

• Architecture

• Regularization

• Data Augmentation



Preprocessing Steps (1)
1)  Crop out black



Preprocessing Steps (2)
2)  Resize images while preserving aspect ratio

Try multiple image sizes including 512x512, 128x128, and 32x32



Class Imbalance Problem
• A major problem we had in our data set is that the number of 

images from each class is heavily skewed

• About 28,000 images for class 0, 3000 for class 1, 2000 for 
class 2, 800 for class 3, and only 700 for class 4 

• 3 approaches we are taking:  

○ Adjust cost function to penalize misclassifications in 
proportion to frequency in training data

○ Force minibatches to have equal number of 
observations from each class

○ Use data augmentation to balance classes by 
“creating” new examples

For illustration purposes:



Convergence Tweaks (1)
• In addition to SGD, we also implemented Momentum

• On MNIST dataset, Momentum empirically increases converged 
by a factor of 2-3 times!

• Momentum borrows from physics concepts.  Basically, the 
gradient descent procedure builds momentum towards a 
direction if the gradient stays in the same direction from 
iteration to iteration.



Convergence Tweaks (2)
• We found some difficulty in getting our net to converge due to 

learning rate parameter

• To help remedy this, we implemented RMSProp which is an 
adaptive learning rate procedure

• Basically, it speeds up learning as long as performance is 
improving, and slows down learning when performance is not



Convergence Tweaks (3)
• We also combined RMSProp with Momentum 

○ Empirically, this didn’t result in faster 
convergence

• Finally, we also tried Adadelta
○ Basically an adaptation of RMSProp in 

that it also uses historical gradients
○ The paper is at: http://arxiv.

org/abs/1212.5701

• Adadelta has an advantage in that it doesn’t 
require any hyperparameters like a learning rate 
or momentum 

• Ended up using adadelta for the time being

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701


Architecture
We tried two distinct architectures.

1) The basic Lenet5 architecture with some adaptations for our 
problem set, including the usage of color images

2) Another custom architecture:
a) 2 convolution layers with 2x2 max pooling
b) another convolution layer with no max pooling
c) a fourth convolution layer with 2x2 max pooling
d) 3 fully connected layers with leaky rectifiers
e) a final classifer layer (logistic regression)



Regularization(1)

• Tried L2 regularization on all weight 
parameters to help combat overfitting

• Set the same weight across all layers
• Easy to prevent overfitting but did not 

help predictive performance much



Regularization(2)
• Also implemented Dropout on 

each layer in our net

• Basic idea is to zero out 
neurons at random during 
training

• This helps regularize the net 
because neurons are forced to 
be less codependent and thus 
learn useful discriminative 
features



Regularization(3)
● Also used leaky rectifiers (RELUs) 

in the fully connected (hidden) 
layers

● Essentially, when x < 0, leaky 
RELUs have a small slope instead 
of zero

● Seemed to help keep overfitting 
down a lot

● Experimented with values 
between 0 and .5
○ Ended up using values 

nearer .5



Data Augmentation

• More data -> prevent from overfitting

• From each image: apply a series of random transformations



Data Augmentation
Translation:

Zooming:



Data Augmentation
Rotation:

Flipping:



Data Augmentation

Combining all the random perturbations:



Limitations

● Using Amazon GPUs
○ Costs $.65/hour for on demand instances

● Dataset is very large
○ Costs $.10/GB/month
○ Train set is approximately 40 GB
○ Test set is approximately 55 GB

● Models take a long time to run
○ Approximately 6 to 8 hours for only 200 epochs
○ Sometimes models can take days to train
○ Takes a long time to tell if changes are working well
○ Many hyperparameters to optimize



Results

● We have achieved 33% validation accuracy


