
Retinopathy Net

Alberto Benavides
Robert Dadashi
Neel Vadoothker

Motivation
• We were interested in applying deep learning techniques

to the field of medical imaging

• Field holds a lot of promise and can help save lives

• Kaggle is currently holding a competition to build software
that can automatically detect different stages of the eye
disease Diabetic Retinopathy using high quality medical
images

What is Diabetic Retinopathy?
• Leading cause of blindness in the developed

world, affecting over 93 million people

• Usually associated with long term diabetes
in patients

• Progress of disease can be slowed if caught
in time, but often doesn’t show symptoms
until it’s too late

• Diagnosing this eye condition is a time
consuming process for trained clinicians

Normal Vision

Moderate DR Vision

Different Stages of DR

Healthy Unhealthy

Symptoms

• Blood Vessels

• Micro-aneurysms

• Exudates

• Hemorrhage

Blood Vessels

• First major symptom are
the blood vessels

• Eyes with DR have
damaged blood vessels
that are unable to nourish
the retina

• See right for examples

Normal Blood Vessels

Damaged Blood Vessels

Micro-Aneurysms

• Tiny area of blood
protruding from an artery
or vein in the back of the
eye

• This is due to damaged
blood vessels eventually
blowing up and leaking
blood

Exudates

• In addition to blood,
sometimes fats spill out
from the damaged blood
vessels

• These fats harden into
weird yellow spots on the
retina

Hemorrhages

• As advanced DR occurs,
the blood vessels become
really leaky and
hemorrhages occur in the
eye

• Visually, hemorrhages are
characterized by dark
spots on the eye

Data
• Kaggle provides a large training dataset of approximately

35,000 medical images

• Each image is of extremely high quality, but the images
aren’t standardized.

• About 40GB worth of training data! About 55GB of
testing data.

• Each image is labeled from 0-4 where 0 is healthy and 4
is proliferative DR

Data

• Data comes as both left eye and
right eye

• Has varying quality
○ Some images are poorly lit

Outline of Our Solution
• Preprocessing steps

• Class Imbalance Problem

• Convergence tweaks

• Architecture

• Regularization

• Data Augmentation

Preprocessing Steps (1)
1) Crop out black

Preprocessing Steps (2)
2) Resize images while preserving aspect ratio

Try multiple image sizes including 512x512, 128x128, and 32x32

Class Imbalance Problem
• A major problem we had in our data set is that the number of

images from each class is heavily skewed

• About 28,000 images for class 0, 3000 for class 1, 2000 for
class 2, 800 for class 3, and only 700 for class 4

• 3 approaches we are taking:

○ Adjust cost function to penalize misclassifications in
proportion to frequency in training data

○ Force minibatches to have equal number of
observations from each class

○ Use data augmentation to balance classes by
“creating” new examples

For illustration purposes:

Convergence Tweaks (1)
• In addition to SGD, we also implemented Momentum

• On MNIST dataset, Momentum empirically increases converged
by a factor of 2-3 times!

• Momentum borrows from physics concepts. Basically, the
gradient descent procedure builds momentum towards a
direction if the gradient stays in the same direction from
iteration to iteration.

Convergence Tweaks (2)
• We found some difficulty in getting our net to converge due to

learning rate parameter

• To help remedy this, we implemented RMSProp which is an
adaptive learning rate procedure

• Basically, it speeds up learning as long as performance is
improving, and slows down learning when performance is not

Convergence Tweaks (3)
• We also combined RMSProp with Momentum

○ Empirically, this didn’t result in faster
convergence

• Finally, we also tried Adadelta
○ Basically an adaptation of RMSProp in

that it also uses historical gradients
○ The paper is at: http://arxiv.

org/abs/1212.5701

• Adadelta has an advantage in that it doesn’t
require any hyperparameters like a learning rate
or momentum

• Ended up using adadelta for the time being

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

Architecture
We tried two distinct architectures.

1) The basic Lenet5 architecture with some adaptations for our
problem set, including the usage of color images

2) Another custom architecture:
a) 2 convolution layers with 2x2 max pooling
b) another convolution layer with no max pooling
c) a fourth convolution layer with 2x2 max pooling
d) 3 fully connected layers with leaky rectifiers
e) a final classifer layer (logistic regression)

Regularization(1)

• Tried L2 regularization on all weight
parameters to help combat overfitting

• Set the same weight across all layers
• Easy to prevent overfitting but did not

help predictive performance much

Regularization(2)
• Also implemented Dropout on

each layer in our net

• Basic idea is to zero out
neurons at random during
training

• This helps regularize the net
because neurons are forced to
be less codependent and thus
learn useful discriminative
features

Regularization(3)
● Also used leaky rectifiers (RELUs)

in the fully connected (hidden)
layers

● Essentially, when x < 0, leaky
RELUs have a small slope instead
of zero

● Seemed to help keep overfitting
down a lot

● Experimented with values
between 0 and .5
○ Ended up using values

nearer .5

Data Augmentation

• More data -> prevent from overfitting

• From each image: apply a series of random transformations

Data Augmentation
Translation:

Zooming:

Data Augmentation
Rotation:

Flipping:

Data Augmentation

Combining all the random perturbations:

Limitations

● Using Amazon GPUs
○ Costs $.65/hour for on demand instances

● Dataset is very large
○ Costs $.10/GB/month
○ Train set is approximately 40 GB
○ Test set is approximately 55 GB

● Models take a long time to run
○ Approximately 6 to 8 hours for only 200 epochs
○ Sometimes models can take days to train
○ Takes a long time to tell if changes are working well
○ Many hyperparameters to optimize

Results

● We have achieved 33% validation accuracy

